

Retest

Automated black box regression testing tool

Home •
DiffPDF •
comparepdfcmd •
Books •
Site Map

Command
Line Interface
• Retest Plan Files
• Retest Plan File Examples
• Retest API
• Download

In view of the EU’s Cyber
Resilience Act and an abundance of caution, we have withdrawn all
our free software.

Retest makes it simple to automate black box regression testing on
Windows and Unix.

Retest works by reading a retest plan (.rt plain text file) and
either generating expected files or generating actual files and
comparing them with previously generated expecteds, reporting any
discrepencies. (It can also be used purely to generate files.)

All you need to do to use retest (beyond the easy one-off process of installing it), is to create a suitable
retest plan file for each
application you want to test.

For developers, retest can also be used as a Rust library; see the
Retest API.

Retest is free open source software (FOSS) licensed under the GNU
General Public License version 3 (GPLv3).

Command Line Interface

retest v4.0.10 © 2019-21 Qtrac Ltd. All Rights Reserved.
 https://www.qtrac.eu/retest.html

usage: retest [verbose] [cpus=n] [nocolor] [tests] [rt.rt]
 run all (or specified numbered) tests and
 save their outputs in the actuals folder and
 diff their outputs with the expecteds

usage: retest [verbose] [cpus=n] [nocolor] [tests] generate [rt.rt]
 run all (or specified numbered) tests and
 save their outputs in the expecteds folder
 (g -g --generate gen generate)

usage: retest doc
 show the manual in your web browser and quit
 (doc -m --manual manual)

usage: retest help
 show this help text and quit (help -h --help /?)

usage: retest version
 show retest's version and quit
 (version -V --version)

verbose: default is: show summary, errors, failures;
 use one verbose to show each test; use two for more;
 use quiet to only show errors or failures
 (v -v --verbose verbose q -q --quiet quiet)
cpus: if specified uses at most this number of cpus;
 default is to use all available
nocolor: if specified output is monochrome (useful for redirecting)
 default is to use colors (nocolor --nocolor mono --mono)
tests: numbers of specific tests to run or generate,
 e.g., 1,3,5,8-21 36-39 52 61-65
rt.rt: the retest plan file to use; defaults to
	 rt-{win,unix}.rt if it exists, otherwise to rt.rt

The command line arguments may be given in any order.

License: GNU General Public License Version 3.

Setting cpus=1 is useful if you want to force generation or
testing to be done one test at a time in order (e.g., to see the total
time). Note that if any non-existent test numbers are specified, they
will be silently ignored.

Retest's exit code/error level is 0 if there were no failures or errors
generating or testing, or 1 if any failures or errors occurred, or 2 for
any other kind of error.

Retest Plan Files

If you specify a .rt retest plan file on the command line,
retest will use it. Otherwise, on Windows, retest will look for
rt-win.rt and use that if it exists, falling back to
rt.rt otherwise. Similarly, on Unix, retest will look for
rt-unix.rt and use that if it exists, falling back to
rt.rt otherwise.

Every retest plan file starts with an optional “environment” section and
then has one or more “test” sections. (Retest
Plan File Examples are shown further on.)

Blank lines and comment lines (beginning with #) are ignored
and may be used freely.

Retest Plan Environment Section

If present at all, this section must come first. It has this form (required, optional, user-specified):

[ENV]
APP: application-to-test
 argument-for-application
 ...
 argument-for-application
EXPECTED_PATH: path-for-expected-files
ACTUAL_PATH: path-for-actual-files
DIFF: comparison-application
 argument-for-comparison-application
 ...
 argument-for-comparison-application
SET: user-key: user-value
...

Here are explanations of the arguments that can (or must) be used:

	application-to-test
	Optional. If most or every test is of the same application it is
best to put the application here with its path.
Note that if you omit this, then you'll need to specify the application
individually in every test's section.
For example:

 APP: C:\Program Files\diffpdfc\diffpdfc.exe

You may specify zero or more arguments, each one indented on its
own line. If present these will be put before any arguments given
in the test sections themselves.
For example:

 APP: C:\Python36\python.exe
 foxtrot.py

(On Unix an interpreter will normally be found in the $PATH,
but on Windows—or when you want to use a particular version when
two or more are present—it will need to be specified, as
illustrated here.)

	path-for-expected-files
	Optional. This defaults to rt_expected in the current
folder. It must be to a writable folder. The
files generated here are the “expecteds” and are meant to be preserved
between runs (to compare against), so the folder needs to be somewhere
permanent. For example:

EXPECTED_PATH: V:\diffpdf5\rt_expected

	path-for-actual-files
	Optional. This defaults to rt_actual in the current
folder. It must be to a writable folder. The
files generated here are the “actuals” which will be compared with the
expecteds. For example:

ACTUAL_PATH: V:\tmp\rt_actual

	comparison-application
	Optional. Retest is capable of comparing text files, JSON files,
image files (in some common formats), and binary files. However, if most
or all your tests need to use a custom comparison “diff” tool, then you
can specify it here. For example:

DIFF: C:\bin\comparepdfcmd\comparepdfcmd.exe

If you specify a custom tool, you may also specify zero or more
arguments, each one indented on its own line. If present these will be
put before any arguments given in the test sections themselves.
For example:

DIFF: diff
 -q
 -Z

Alternatively, you can specify the diff to use individually for each
test (e.g., if they vary). Note that if you use a custom tool it
must return (exit code/error level) 0 for when the two files
compared are considered to be the same and non-zero otherwise.
	user-key: user-value
	Zero or more, each on its own line. You can specify your own
“environment” variables using SET: entries. For
example:
SET: INV: E:\accounts\invoices

Now, in any entry for any test, you can use $INV,
e.g., $INV\inv681.pdf, and this will be
expanded as you'd expect into
E:\accounts\invoices\inv681.pdf.

Note that user-keys are case-sensitive (e.g.,
Q is different from
q), and
that user-values may not themselves contain
variables (except for $HOME).

Retest Plan Test Sections

Each retest plan file must have at least one test. Tests are numbered
from 1. Each plan has this form:

[number]
NAME: name-or-description
EXITCODE: expected-exit-code
WAIT: wait-time-seconds
STDIN: stdin-filename
STDOUT: stdout-filename
APP: application-to-test
 argument-for-application
 ...
 argument-for-application
DIFF: comparison-application
 argument-for-comparison-application
 ...
 argument-for-comparison-application

Here are explanations of the arguments that can (or must) be used:

	number
	Required. Must start from 1, and must be unique. For
example:

[26]

	name-or-description
	Optional. A test name or description that will appear when tests
pass. For example:

NAME: Bug #X0513 (PNG output)

	expected-exit-code
	Optional. The exit code the application to test is expected to
return. The default is 0, so this must be specified if a non-zero
exit code is expected. For example:

EXITCODE: 3

	wait-time-seconds
	Optional. How long retest should wait before running the
application to test. The default is 0.0 secionds, i.e., don't wait at
all. This is useful for tests that “outrun” the operating system and
fail needlessly, but which pass if the operating system is given a short
time to catch up before running the test. For example:

WAIT: 0.25

	stdin-filename
	Optional. If the application to test is an interactive console
program that expects input from the user, the expected input can be
stored in this file in which case the file's contents will be fed to the
application to test's stdin as if entered by the user.
For example:

STDIN:
app-stdin26.txt

	stdout-filename
	Optional. If the application to test outputs to stdout rather
than to a file, use this entry to save the stdout to a file which
can then be compared. The file will be written to the
EXPECTED_PATH if generating or to the
ACTUAL_PATH if testing. For example:

STDOUT: 26.json

	application-to-test
	Required. Use $APP to use the APP value from the [ENV]
section; otherwise put the application to test with its path.
Typically, the application is set in the [ENV]
section, which simplifies this entry, in most cases reducing it, for
example, to:

APP: $APP

	argument-for-application
	You may specify zero or more arguments, each one indented on its
own line. (These arguments always follow any that are given in
the [ENV] section's
APP entry.) At least one should be the
output filename with the form $OUT_PATH/filename.ext (using Windows \ or Unix
/ path separators on Windows; or / on Unix)—unless
you are using the STDOUT entry.

When generating, the $OUT_PATH will be set to
the EXPECTED_PATH value, and when testing it
will be set to the ACTUAL_PATH value. (Retest Plan File Examples are shown below.)

	comparison-application
	retest can detect and compare images in common formats or JSON
files, using the file's suffix; otherwise it compares files assuming
they are UTF-8 encoded plain text (and ignores line-endings). However,
if you only want to compare the application's exit code then set DIFF: no (or 0 or false). If you have
plain text that isn't UTF-8 (or 7-bit ASCII) encoded, you can force
retest to use a comparison of your choice. For example, you can set
DIFF: rt-binary to force
binary comparison, or force JSON, image, or text comparisons using rt-json or rt-image or rt-text.

Alternatively, you can use an external comparison program, in which case
you can also provide zero or more one per line indented argument-for-comparison-application entries
(These arguments always follow any that are given in the [ENV] section's DIFF
entry.) For example, here's how to use Unix diff (rather than retest's
built-in text comparison) to compare text while ignoring trailing
whitespace at the end of each line:

DIFF: diff
 -q
 -Z

Note that if you set DIFF: in the
[ENV] section, you can use that setting in each
test simply by using:

DIFF: $DIFF

(See Example #3.)

Note that in addition to using $OUT_PATH (which
will be automatically set to either EXPECTED_PATH or ACTUAL_PATH), you can also use $HOME which will be set to your home folder (on all
platforms).

Retest Plan Examples

Example #1

[ENV]
APP: C:\Program Files\diffpdfc\diffpdfc.exe
 -q

[1]
NAME: Invoice check
EXITCODE: 4
APP: $APP
 -r
 $OUT_PATH\01.csv
 V:\pdfs\invoice_old.pdf
 V:\pdfs\invoice_new.pdf

[2]
NAME: Selected pages appearance check
APP: $APP
 -a
 --pages2=1-3,6-8
 V:\pdfs\pages-a1-1-6.pdf
 V:\pdfs\pages-a2-1-3,6-8.pdf
DIFF: no

This example has two tests. (Note that all commands shown below occupy one
line each but may be wrapped by the browser.)

When generating expecteds the first command line will be:

"C:\Program Files\diffpdfc\diffpdfc.exe" -q -r rt_expected\01.csv V:\pdfs\invoice_old.pdf V:\pdfs\invoice_new.pdf

and the second will be:

"C:\Program Files\diffpdfc\diffpdfc.exe" -q -a --pages2=1-3,6-8 V:\pdfs\pages-a1-1-6.pdf V:\pdfs\pages-a2-1-3,6-8.pdf

When retest is used to run and compare, the first test is expected to
produce an exit code/error level of 4, and to output
rt_actual\01.csv which is expected to be identical to
rt_expected\01.csv. If either of these isn't true a
failure will be reported. Note that retest will do a text comparison
since that's the default for non-image non-JSON files.

For the second test no files are compared (due
to the DIFF: no line),
and the exit code is expected to be 0.

Example #2

[ENV]
APP: alpha.py

[01]
NAME: JSON output
APP: $APP
 $OUT_PATH/01.json

[02]
NAME: Binary output
APP: $APP
 $OUT_PATH/02.bin
DIFF: rt-binary

[03]
NAME: Text output (ignoring trailing whitespace differences)
APP: $APP
 $OUT_PATH/03.txt
DIFF: diff
 -q
 -Z
 $EXPECTED_PATH/03.txt
 $ACTUAL_PATH/03.txt

[04]
NAME: Captured output
STDOUT: 04.txt
APP: $HOME/bin/beta.sh

[05]
NAME: Interactive usage
STDIN: stdin05.txt
STDOUT: 05.txt
APP: $APP
 -i

Here, test 1 is expected to have an exit code of 0 (the default) and to
produce a UTF-8 encoded JSON file. Retest's JSON comparison compares the
actual JSON values and ignores any superfluous whitespace. (Force a text
comparison using DIFF: rt-text if you want to compare JSON files as text.)

Test 2 is expected to produce a binary file, so we have used
DIFF: rt-binary to force
retest to compare byte-by-byte.

For test 3, we have chosen to use an external diff tool. Notice that for
this we must use the
$EXPECTED_PATH
and the
$ACTUAL_PATH
so that we can give the external comparison tool the generated expected
and the newly created actual to compare.

For test 4 we have an application that outputs to stdout so we tell
retest to capture that output to a file which can then be compared.

Test 5 checks interactive usage. The input that the user is expected to
enter is in the file stdin05.txt—this is fed into the
application as if entered by the user. And the program's output (which
is to the console, i.e., stdout) is captured into a file that is then
generated or compared against. (Note that on Windows it may sometimes be
necessary to use DIFF: rt-binary when using STDOUT.)

Example #3

[ENV]
APP: delta.py
DIFF: diff
 -q
 -Z
SET: TD: test_data

[30]
APP: $APP
 $TD/30.dat
 $OUT_PATH/30.txt
DIFF: $DIFF
 $EXPECTED_PATH/30.txt
 $ACTUAL_PATH/30.txt

[31]
APP: $APP
 -a
 $TD/31.dat
 $OUT_PATH/31.txt
DIFF: $DIFF
 $EXPECTED_PATH/31.txt
 $ACTUAL_PATH/31.txt

In this example we are using an external Unix diff tool for both tests.
Because we aren't using one of retest's built-in comparisons, we
must specify the two files to compare.

So, for example, when generating, (retest g) the two command
lines will be:

./delta.py test_data/30.dat rt_expected/30.txt
./delta.py -a test_data/31.dat rt_expected/31.txt

On Windows, they will start with delta.py of course, and the
[ENV] section's APP
may need to specify the interpreter, e.g.:

APP: C:\Python36\python.exe
 delta.py

And when testing and comparing (retest v) the command lines
will be:

./delta.py test_data/30.dat rt_actual/30.txt
diff -q -Z rt_expected/30.txt /tmp/rt_actual/30.txt
./delta.py -a test_data/31.dat rt_actual/31.txt
diff -q -Z rt_expected/31.txt rt_actual/31.txt

Example #4

[ENV]
APP: X:\build\reporter.exe
EXPECTED_PATH: X:\build\rt_expected
ACTUAL_PATH: U:\rt_actual
DIFF: T:\bin\comparepdfcmd\comparepdfcmd.exe

[1]
NAME: Compare Words (Terms and Conditions)
APP: $APP
 --config=X:\build\rt_data\01.ini
 -o
 $OUT_PATH\01.pdf
DIFF: $DIFF
 $EXPECTED_PATH\01.pdf
 $ACTUAL_PATH\01.pdf

[2]
NAME: Compare Appearance (Advert)
APP: $APP
 --config=X:\build\rt_data\02.ini
 -o
 $OUT_PATH\01.pdf
DIFF: $DIFF
 -a
 $EXPECTED_PATH\01.pdf
 $ACTUAL_PATH\01.pdf

This example shows how you might automate the testing of an application
that produces .pdf files that you want to compare using comparepdfcmd. You could use the same
approach to compare using diffpdfc, except
in that case the ENV section's DIFF part would be
something like this:

DIFF: T:\bin\diffpdfc\diffpdfc.exe
 -q

In the first test the application to test (reporter.exe)
reads a configuration file and outputs a .pdf which is then
compared using comparepdfcmd. The second test is similar, only
the comparison is done by appearance rather than the default of
comparing words.

Download

In view of the EU’s Cyber
Resilience Act and an abundance of caution, we have withdrawn all
our free software.

Home •
DiffPDF •
comparepdfcmd •
Books •
Site Map

Your Privacy •
Copyright © 2006 Qtrac Ltd.
All Rights Reserved.

Top

